US009256474B2

a2z United States Patent (10) Patent No.: US 9,256,474 B2
Singh et al. 45) Date of Patent: Feb. 9, 2016
(54) AUTOMATICALLY ALIGNING VIRTUAL GOG6F 12/08 (2006.01)
BLOCKS TO PHYSICAL BLOCKS GOGF 13/00 (2006.01)
GOG6F 11/00 (2006.01)
(71) Applicant: Tintri Inc., Mountain View, CA (US) (52) U.S.CL
. . R CPCcc..... GOG6F 9/5077 (2013.01); GO6F 11/00
(72) Inventors: féggag,;fafﬁzfgvhf,oﬁﬁlﬁl ;ﬁwigf (2013.01); GOGF 12/00 (2013.01); GOGF 12/02
Gato;, CA (US); Mark G. Grit,ter, (2013.01); GOGF 12/06 (2013.01); GOGF
Eagan, MN (US); Edward K. Lee, 12/0646 (2013.01); GOGF 12/0868 (2013.01);
Dublin, CA (US) GO6F 12/0871 (2013.01); GOG6F 13/00
(2013.01); GOGF 13/12 (2013.01); GOGF
(73) Assignee: Tintri Inc., Mountain View, CA (US) 13/122 (2013.01); GO6F 13/124 (2013.01)
(58) Field of Classification Search
(*) Notice: Subject to any disclaimer, the term of this None
patent is extended or adjusted under 35 See application file for complete search history.
U.S.C. 154(b) by O days.
(56) References Cited
(21) Appl. No.: 14/509,857
U.S. PATENT DOCUMENTS
(22) Filed: Oct.8, 2014 2012/0047110 Al* 2/2012 Brunet etal. 707/640
(65) Prior Publication Data * cited by examiner
US 2015/0089182 Al Mar. 26, 2015 Primary Examiner — Midys Rojas
Related U.S. Application Data (74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
(63) Continuation of application No. 13/421,712, filed on (57) ABSTRACT
Mar. 13, 2012, now Pat. No. 8,909,894, Automatically aligning virtual blocks of partitions to blocks
(60) Provisional application No. 61/453,356, filed on Mar. of'underlying physical storage is disclosed. In some embodi-
16, 2011. ments, a starting offset of a partition included in a logical
container is detected. In some embodiments, a misalignment
(51) Int.ClL correction amount for a partition included in a logical con-
GO6F 12/00 (2006.01) tainer is detected. In some embodiments, a misalignment
GOG6F 9/50 (2006.01) associated with a partition included in a logical container is
GO6F 13/12 (2006.01) corrected.
GO6F 12/02 (2006.01)
GO6F 12/06 (2006.01) 24 Claims, 20 Drawing Sheets
500\‘

Determine a misalignment correction amount for a
first partition of a virtual disk

|~ 502

!

Store the misalignment correction amount for the firstf~" 503
partition of the virtual disk

Yes

4

504
More partitions?

506

/

Determine a misalignment correction amount for a
subsequent partition of the virtual disk

!

Store the determined misalignment correction
amount for the subsequent partition of the virtual disk

|~ 508

US 9,256,474 B2

Sheet 1 of 20

Feb. 9, 2016

U.S. Patent

Vi '9Old
RN mv_ Nm TR
7 N
N
aubijesi
paubiesiy _ paubiy EoIsAU
|
I
I
I |esisAyd
I
_
| uonied _ [eNJIA
Ul %00|q JOUIBJUOD |
|eaiBoj 3sl Jo Heig /_
3)
% eoeds pansesel
e
| uoniyed ﬂmnmnm Jauiejuoo 00}
s |ea1Bo Jauejuoo
555 |eaibo
000) _J
4
c0lL

US 9,256,474 B2

Sheet 2 of 20

Feb. 9, 2016

U.S. Patent

gl 'Old

¢Sl elep paliseQ

961

12512

aM ¢¢ nman

/wo_\

¥00[q
|eaisAyd

lea1sAyd

—

[enJip

| uoniued

aoeds poAIasal
Jauiejuoo
[e21607

00l
>~ Jauiejuoo
[eo1607

061

U.S. Patent Feb. 9, 2016 Sheet 3 of 20 US 9,256,474 B2

200\‘
| VM
| VM
212 | VM
™ vy
210
206 ~| ~d VM
208 ~ |
VM
Server
204
202 Storage system
~4 ge sy

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 4 of 20 US 9,256,474 B2

302
N Communication Interface
300
~
Network File Hypervisor
System Front End Integration
304 y g Va 306
AN
308
Auto alignment engine
s R —
310 312
N VM Meta information |~
Storage Database

FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 5 of 20 US 9,256,474 B2

400\‘

Start

Determine a starting offset for a partition |~ 402

l

Automatically configure a storage system to translate an offset
associated with a read or write request associated with the

partition by an amount determined based at least in part on an Ve 404

amount of misalignment between the starting offset of the partition
and a physical storage block boundary of the storage system

End

FIG. 4

U.S. Patent Feb. 9, 2016 Sheet 6 of 20 US 9,256,474 B2

500 ~

Start

Determine a misalignment correction amount for a Ve 502
first partition of a virtual disk

I

Store the misalignment correction amount for the first e 503
partition of the virtual disk

504

More partitions?

Yes 506

v /

Determine a misalignment correction amount for a
subsequent partition of the virtual disk

y No

Store the determined misalignment correction
amount for the subsequent partition of the virtual disk

End

FIG. 5

U.S. Patent Feb. 9, 2016 Sheet 7 of 20 US 9,256,474 B2

670 ~

Start

Extract data written to a logical container |~ 672

Determine a starting offset for a first partition of the
one or more partitions of the logical container based
at least in part on the extracted data

End

FIG. 6A

U.S. Patent Feb. 9, 2016 Sheet 8 of 20 US 9,256,474 B2

650 ~

Start

Detect a master boot record (MBR) data structure of | - 652
a virtual disk

Extract a partition table from the MBR |~ 654

Determine boundaries of one or more partitions of
the virtual disk based at least in part on the extracted
partition table

End

FIG. 6B

US 9,256,474 B2

Sheet 9 of 20

Feb. 9, 2016

U.S. Patent

aso old
g9001 aMveol Z
aMveol aMs’Le L
19810 Buipug 1osyo Buinelg uonied

J9 9OId
198140 Buipuz 189S0 buie)s
Z uoniled Z uoniued
209
\ 4 Y \
{
Z uoniued | uonined (44 “6°8) soeds
o paAJasal YsIp |[BNMIA
A
198140 Buipug 19810 buinelg

Luoniued

| uoniued

009
e 3sip
lenuIA

U.S. Patent Feb. 9, 2016 Sheet 10 of 20 US 9,256,474 B2

770 ~

Start

Detect one or more regions corresponding to one or 772
more partitions included in a logical disk -

Collect statistical information associated witha | ~ 774
plurality of potential misalignment correction amounts
for a first region of the one or more regions

End

FIG. 7A

U.S. Patent Feb. 9, 2016 Sheet 11 of 20 US 9,256,474 B2

750 ~

Start

|~ 752
Build a histogram associated with a plurality of
potential misalignment amounts for a detected region [¢————
associated with a partition

754

Determine misalignment amount?

Yes

v

Apply misalignment translation to a request
associated with the partition based on the
determined misalignment amount

End

FIG. 7B

U.S. Patent Feb. 9, 2016 Sheet 12 of 20 US 9,256,474 B2

4]

R A
K
fedateds

i, o o o LK K
iiaialetete!
SaateteSaleds

b,
2505

Number of
accesses

-
L

55

o
o
2505
Ty

el
oo

i
-
2

it i H 5,
S
S

o
25452
2505

s
b
585

3

0 512b 1024 b 1536 b 2048 b

Potential misalignment correction amounts for Region
31.5KB to 1024KB

FIG.7C

o
2525
2505

Number of
accesses

oo e
e bl
0 512 b 1024 b 1536 b 2048 b
Potential misalignment correction amounts for Region 1024KB
to 2028KB

FIG. 7D

US 9,256,474 B2

Sheet 13 of 20

Feb. 9, 2016

U.S. Patent

| uoijiped Jo

8 "OId

| uoijied Jo

junowe junowe
UoI198.109 Juswubljesipy UoI1198.109 juswubljesipy
—
TR mv_ Nm” TR
/
\ \ N JoSO \ \ A JOSHO 300|q
9SO | Buipus SO 1 Buipess [e1sAuygd
Bupus \ |pauiesiyy Buiejs | poubijesiy
pajsnipy | pajsnipy _ [esisAyd
\ | _
\ I
en
. _ |lenpIp

\ I
\l |

IJ

aoeds paAlasal
Z uoniped | uoniped JSID [eNMIA > mm_w
[eNMIA
-

US 9,256,474 B2

Sheet 14 of 20

Feb. 9, 2016

U.S. Patent

6 9OId
¢ uoniyed Jo4H
Junowe
¢ uoiijed 1o4
JUNOWE UOND8.I0D Emm_ﬁm_tmm_u
wawubiesiy Buniys esIN | uonnied Jo
leuonippy —A— junowe
A _}——uo1108.100 Juswubijesiy
aEEER mx Nm cmmm
7 _ \
\ asyo \
JoSHO | sk
Buipus / | Bupus / __ mqu_m%w _mw_un_uwﬁw_mn_
pasnipy | poubliesin \ | paubiesiy .
\ | 19sj0 Buniers \ \
N paisnipy '\ | leatshud
\ \ |
\ l 1enjuip
\ \
\l \\
IJ
aoeds panlasal
Z uoiped | uoped 3SIp [BNUIA > m%_w
[eNHIA
-/

U.S. Patent Feb. 9, 2016 Sheet 15 of 20 US 9,256,474 B2

1000\‘

Receive a read or write request
associated with a partition

l

1001

Determine a misalignment correction amount for the
partition

Apply misalignment correction to an offset associated
with the request

|_~1004

Perform the request based at least in part on the
misalignment correction applied to the offset
associated with the request

End

FIG. 10

U.S. Patent Feb. 9, 2016 Sheet 16 of 20 US 9,256,474 B2

Misaligned read or write request
(misaligned underlying offset)

l

Auto alignment - 308
engine

l

Corrected read or write request

(corrected underlying offset =
misaligned underlying offset +
misalignment correction amount)

FIG. 11

U.S. Patent Feb. 9, 2016 Sheet 17 of 20 US 9,256,474 B2

Start
Ve 1202
Buffer one or more received write requests —
1204
Found MBR? No
Yes
Read the MBR to determine a misalignment |~ 1206

correction amount associated with each of one or
more partitions

!

Apply misalignment correction to an offset associated|~ 1208
with each of the one or more buffered write requests

|

Perform each of the one or more buffered write
requests based at least in part on the misalignment Va 1210
correction applied to the offset associated with the

request

End

FIG. 12

US 9,256,474 B2

Sheet 18 of 20

Feb. 9, 2016

U.S. Patent

solAq u

}

€l 'Old

aM ce
\

|

v\

19s}40 Buipus “
I

|

\

pjelejle
Josyo buipels | 1 jesyo Buiels |egishyg

|
|
|
paisnipy |\ | paubiesiy
_
]

pajsnipy / \ |esisAud
\ \
/" ,,_ [enuIA
\l \
IJ
aoeds paAlasal
uonn.Je 00¢l
| uoniJed %SIP [ENMIA > wSIp
[ENUIA
-/

U.S. Patent Feb. 9, 2016 Sheet 19 of 20 US 9,256,474 B2

1400\‘

Start

_ _— 1402
Receive a read or write request associated with a
partition
o 1404
Offset within
last No
n bytes?

Yes

y

Apply wrapping back of the request to an offset of a | ~ 1406
gap associated with the partition

l

Perform the request based at least in part on the | ~1408
offset of the gap associated with the partition

End

FIG. 14

gL 'Old

s91Ag u Jo deo

US 9,256,474 B2

]

0]
255
el

07
&
ate!

Sheet 20 of 20

Feb. 9, 2016

U.S. Patent

o
00|19
|eoisAyd

|esisAyd

[enin
Z
|)
|| g
_ | 90eds poAlosal 0051

uonnJe

| Uoed HSIP [BNYIA > o
_ _ |enuIA
| !)

| Uoljiled JO S3JAQ U Jser]

US 9,256,474 B2

1
AUTOMATICALLY ALIGNING VIRTUAL
BLOCKS TO PHYSICAL BLOCKS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/421,712, entitled AUTOMATI-
CALLY ALIGNING VIRTUAL BLOCKS TO PHYSICAL
BLOCKS filed Mar. 15, 2012 which s incorporated herein by
reference for all purposes, which claims priority to U.S. Pro-
visional Patent Application No. 61/453,356 entitled AUTO-
MATICALLY ALIGNING BLOCKS OF VIRTUAL DISKS
FOR VMS filed Mar. 16, 2011 which is incorporated herein
by reference for all purposes.

BACKGROUND OF THE INVENTION

Intypical systems, a partition within a virtual disk can start
at an offset that is not a multiple of the block size used by the
physical underlying storage subsystem that stores the virtual
disk. As a result, inefficiencies are created in accessing data
stored on the storage subsystem. For example, a single block
access at the virtualization level (e.g., the access is made to a
virtual disk block of a virtual disk partition) may map to
multiple physical blocks or straddle multiple physical blocks
(e.g., instead of a single physical block) at the underlying
storage subsystem. Accessing multiple physical blocks may
require reading more data than is needed and discarding the
unneeded data, which could be undesirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1A is an example of a logical container and portions
of an underlying physical storage subsystem to which data
associated with the logical container is to be stored.

FIG. 1B is an example of accessing data associated with a
misaligned partition of a logical container.

FIG. 2 is a diagram showing an embodiment of a file
system for the storage of VMs and virtual disks thereof.

FIG. 3 is a diagram showing an embodiment of a system for
automatically aligning blocks of partitions to blocks of physi-
cal storage.

FIG. 4 is a flow diagram showing an embodiment of a
process for automatically aligning blocks of partitions to
physical blocks of a storage subsystem.

FIG. 5 is a flow diagram showing an embodiment of a
process for determining the misalignment amount of each of
one or more partitions of a virtual disk.

FIG. 6A is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
logical container.

FIG. 6B is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk.

FIG. 6C is an example of a master boot record (MBR) data
structure.

FIG. 6D is an example of a partition table extracted from
the MBR from virtual disk 600.

FIG. 7A is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk and also determining misalignment correction
amounts by tracking actual disk access patterns over time.

25

30

40

45

50

2

FIG. 7B is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk and also determining misalignment correction
amounts by tracking actual disk access patterns over time.

FIG. 7C shows a histogram for a detected region at 31.5 KB
to 1024 KB of a virtual disk.

FIG. 7D shows a histogram for a detected region at 1024
KB to 2028 KB of the virtual disk.

FIG. 8 is a diagram showing an embodiment of a process
for determining a misalignment correction amount for the
partition associated with the lowest underlying offset in a
virtual disk.

FIG. 9 is a diagram showing an embodiment of determin-
ing a misalignment correction amount for the partition asso-
ciated with the second lowest underlying offset in a virtual
disk.

FIG. 10 is a flow diagram showing an embodiment of a
process for configuring a storage system to translate an offset
of'aread or write request by at least a misalignment correction
amount.

FIG. 11 is a diagram showing an embodiment of applying
misalignment correction for read or write requests associated
with a partition of the virtual disk.

FIG. 12 is a flow diagram showing an embodiment of a
process for buffering write requests until the MBR of the
virtual disk is located.

FIG. 13 is a diagram showing a gap created between a
virtual disk reserved space and a partition associated with the
lowest underlying offset of a virtual disk due to the applica-
tion of misalignment translation.

FIG. 14 is a flow diagram showing an embodiment of a
process for wrapping back data associated with an end of a
partition of a virtual disk.

FIG. 15 is a diagram showing an example of the wrapping
back of the last n bytes of a partition to a gap of n bytes of
physical storage associated with the partition.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the

US 9,256,474 B2

3

purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1A is an example of a logical container and portions
of an underlying physical storage subsystem to which data
associated with the logical container is to be stored.

A virtual machine (VM) environment models physical
storage devices as logical containers (e.g., virtual disks). For
example, virtual disks are physically hosted by a standard
storage subsystem like network-attached storage (NAS) or
storage area network (SAN). Virtual disks can be directly
attached to the system hosting one or more VMs. Each VM
may run a different operating system. As such, different oper-
ating systems may concurrently run and share the resources
of'the same physical machine. When a virtual disk is used by
a guest operating system running on a VM, the virtual disk
will “label” the disk and may also create one or more parti-
tions on the disk in order to create a separate file system on
each partition or use a partition for other purposes (e.g., for
“swapping” or as raw disk volumes). One or more files may
be used to store the contents of virtual disks. In some embodi-
ments, a VM management infrastructure (i.e., a hypervisor)
creates the files that store the contents of the virtual disks
(e.g., the guest operating system, program files and data files)
and the other data associated with the specific VM.

The storage of data of a logical container such as logical
container 100 maps to a set of (contiguous or non-contiguous)
physical blocks of the underlying storage subsystem. In the
example, logical container 100 maps to at least some of the
physical blocks of the underlying storage subsystem (i.e., the
physical storage) shown in the example, including physical
block 108. The physical blocks to which the data of logical
container 100 are mapped and stored can be associated with
one or more hardware devices. In the example, the underlying
storage subsystem is represented by the series of physical
blocks including physical block 108. The physical block is
the lowest unit of data that can be accessed from the under-
lying storage subsystem. To perform a read or write request
associated with a logical container such as a virtual disk, one
ormore physical blocks can be accessed. In the example, each
physical block comprises 32 kilobytes (KB) of data. A logical
container such as logical container 100 of the example gen-
erally has a portion of space that is reserved by the virtual disk
(“logical container reserved space 102”). For example, at
least a portion of logical container reserved space 102 can be
used to store attributes about the logical container (e.g., a
partition table), one or more partitions thereof, other data,
and/or to leave blank. A logical container such as logical
container 100 can also have a user-configurable number of
partitions, each of a user-configurable size. Data associated
with the partitions of logical container 100 (e.g., used by
applications running on the VM) are stored in logical con-
tainer blocks (i.e., logical container 100 in this example). The
virtual disk blocks in turn correspond to block offsets asso-
ciated with physical blocks at the underlying storage sub-
system. In the example, logical container 100 has only one
partition, Partition 1. As shown in the example, data associ-
ated with the first logical container block of Partition 1 is
stored at a corresponding underlying offset at the underlying
storage subsystem.

User datato be stored to logical container 100 are written to
portions of the logical container 100 other than logical con-
tainer reserved space 102, such as Partition 1. Typically, the
data associated with logical container reserved space 102 is

20

25

40

45

4

mapped to an offset associated with the starting of a physical
block such as physical block 108 so the start of logical con-
tainer 100 is aligned with the physical blocks of the underly-
ing storage subsystem. For example, in the underlying storage
subsystem, physical blocks such as physical block 108 begins
at an underlying offset that is zero modulo the size of the unit
of allocation of the storage subsystem (i.e., the physical block
size). So, in various embodiments, when an underlying start-
ing offset of a partition is a multiple of the size of each
physical block, the partition located at that underlying start-
ing offset is considered to be aligned. The following formula
describes an aligned partition:

[Underlying starting offset of the partition] mod
[physical block size]==0.

For instance, if a partition started at underlying physical
starting offset 65,536 bytes and if the physical block size were
32,768 bytes, then the partition is aligned because 65,536
mod 32,768==0.

However, typically, because the conventional size of logi-
cal container reserved space 102 (e.g., a logical container
reserved space sometimes comprises 63 sectors worth of
data) is not usually a multiple of a size of a physical block
(e.g., 8 KB, 32 KB, 64 KB) or due to some other reason, the
underlying starting offset of a partition of a logical container
(i.e., the logical container blocks of the partition) is not
aligned with the physical blocks of the underlying storage
subsystem. As shown in the example, the underlying offset of
Partition 1 maps to an offset which is not at a boundary of a
physical block and this offset is labeled as the “Misaligned
offset.” In various embodiments, when the underlying start-
ing offset of a partition is misaligned relative to the physical
blocks of the underlying storage subsystem, the partition is
referred to as being misaligned. To contrast, the offset at the
starting boundary offset of a physical block is labeled as an
“Aligned offset.” A possible consequence of the underlying
offset of Partition 1 mapping to a misaligned offset is shown
in the next figure, FIG. 1B.

FIG. 1B is an example of accessing data associated with a
misaligned partition of a logical container. In the example,
logical container block 150 starting at the underlying offset of
Partition 1 is requested by a write operation. While logical
container block 150 can be of the same or a different size from
a physical block of the underlying storage subsystem, in this
example, assume that logical container block 150 has the
same size as each physical block of data (e.g., 32 KB).
Because Partition 1 is misaligned relative to the physical
blocks of the underlying storage subsystem, logical container
block 150 maps to desired data 152 which includes portions
of two physical blocks, physical blocks 154 and 156 (as
opposed to only one physical block if Partition 1 were
aligned). As a result, a “read-modify-write” operation would
be applied to both physical blocks 154 and 156 rather than a
simple write operation to a single physical block. The
repeated use of “read-modify-write” operations when a more
resourceful operation could be used slows down accesses to
the storage subsystem overall.

Automatically aligning virtual blocks of partitions to
blocks of underlying physical storage is disclosed. Bound-
aries of one or more partitions are first determined. In some
embodiments, a “partition” refers to a portion of a “logical
container,” which refers to a logical definition associated with
a designated amount of virtual storage. Examples of logical
containers include virtual disks, logical containers, and
LUNSs. In some embodiments, a misalignment correction
amount (in number of offsets), if any, is determined for each
partition (e.g., starting with the partition associated with the

US 9,256,474 B2

5

lowest underlying offset if there are more than one partitions).
The storage system stores and recalls the per-partition mis-
alignment correction amount for each logical container and
uses it to automatically align future misaligned accesses to
this container. Then, the storage system determines a correc-
tion amount associated with a read or write request associated
with the misaligned partition. In various embodiments, the
result of the correction of misalignment is such that most, if
not all, accesses to the storage subsystem become aligned.

While automatic alignment can be applied to logical con-
tainers other than virtual disks, for illustrative purposes, auto-
matic alignment of virtual disks will be discussed in the
examples and figures below.

FIG. 2 is a diagram showing an embodiment of a file
system for the storage of VM and virtual disks thereof. In the
example shown, system 200 includes server 206, network
204, and storage system 202. In various embodiments, net-
work 204 includes various high speed data networks and/or
telecommunications networks. In some embodiments, stor-
age system 202 communicates with server 206 via network
204. In some embodiments, the file system for the storage of
VMs and virtual disks thereof does not include network 204
and storage system 202 is a component of server 206. In some
embodiments, server 206 is configured to communicate with
more storage systems other than storage system 202. In vari-
ous embodiments, storage system 202 refers to one or more
physical systems and/or associated hardware and/or software
components configured to work together to store and manage
stored data, such as files or other stored data objects. In some
embodiments, a hardware component that is used to (at least
in part) implement the storage system may comprise either
disk or flash, or a combination of disk and flash.

In various embodiments, server 206 runs several VMs. In
the example shown, VMs 208, 210, and 212 (and other VMs)
are running on server 206. In various embodiments, data
associated with the virtual disks(s) of a particular VM is
stored at a storage system as one or more files. In some
embodiments, the respective files associated with (at least)
VMs 208, 210, and 212 running on server 206 are stored at the
storage subsystem of storage system 202.

In some embodiments, meta information associated with
(at least) VMs 208, 210, and 212 is stored at storage system
202. In some embodiments, the meta information includes
information that provides mapping or identification. Meta
information includes data associated with locations (e.g., oft-
sets of physical storage) to which files associated with each
VM are stored. Meta information also includes attributes and
any policies associated with a specific VM. Examples of
attributes include a unique identifier of the VM (e.g., a uni-
versal unique identifier or UUID), the files or virtual disks
that comprise the VM, the storage location of each file or
virtual disks associated with the VM, the type of logical
container that is being run by the VM, whether the VM is
currently active or not, etc. Examples of policies, such as
those that relate to storage management, include quality of
service (i.e., the difference in prioritization that is given to
different applications), performance guarantees, resources
quotas, replication, and migration policies for the storage
corresponding to the specific VM. In some embodiments,
some meta information is provided by the administrator (e.g.,
through the administrator interface) and some is collected
and/or updated from the hypervisor or other management
entity (e.g., via queries).

FIG. 3 is a diagram showing an embodiment of a system for
automatically aligning blocks of partitions to blocks of physi-
cal storage. In some embodiments, storage system 202 may
be implemented by system 300. In the example shown, sys-

20

30

40

45

6

tem 300 includes communication interface 302, network file
system front end 304, hypervisor integration 306, auto align-
ment engine 308, storage 310, and VM meta information
database 312. System 300 may be connected to a network (not
shown) to communicate with the host server running one or
more VMs. Storage 310 stores the data (e.g., the files) of the
one or more VMs. Storage 310 also stores the meta informa-
tion associated with the one or more VMs. Storage 310 com-
municates with the host server via communication interface
302 (e.g., a network interface card) and network file system
front end 304 via a network protocol. In some embodiments,
storage 310 is configured to learn of data transferring to or
from the storage via network protocol calls that it receives
from the host server. If the transfer of data affects the VMs for
which storage 310 stores data and meta information, then the
meta information is updated accordingly. A hypervisor (not
shown) creates and deletes VMs at the host server and also
manages resources among the VMs. Storage 310 is config-
ured to communicate (e.g., over the network and communi-
cation interface 302) to the hypervisor through hypervisor
integration 306. In some embodiments, hypervisor integra-
tion 306 is used to communicate with the hypervisor in order
to collect and/or update the meta information stored at storage
310. In some embodiments, VM meta information database
312 also stores at least some of the meta information associ-
ated with the VMs running at the server. In some embodi-
ments, storage 310 and VM meta information database 312
store some of the same meta information. In some embodi-
ments, the VM meta information database 312 is not used in
system 300.

In various embodiments, auto alignment engine 308 is
configured to determine a misalignment amount associated
with a partition of each of one or more virtual disks of VMs at
the host server. For example, auto alignment engine 308 can
first locate a master boot record (MBR) associated with a
virtual disk to extract the partition table that indicates the
starting and ending offsets of each of the one or more parti-
tions configured for that virtual disk. Then, the determined
starting and ending offsets of the partitions can be used to
determine a misalignment amount (in number of offsets) of a
partition relative to a boundary of a physical block at a storage
such as storage 310 associated with each partition. In some
embodiments, once auto alignment engine 308 determines
the misalignment amount associated with a partition, then
auto alignment engine 308 translates an offset associated with
each subsequent read and write request to that partition by the
determined misalignment amount in an attempt to allow the
request to be performed in a manner that is aligned with the
physical blocks of storage 310. For example, a read or write
request associated with a file written or to be written at a
partition is sent (e.g., by an application at the host server over
the network) to system 300. The request is received at com-
munication interface 302 and passed to the network file sys-
tem front end 304, which then passes the request to auto
alignment engine 308. Auto alignment engine 308 then trans-
lates the one or more virtual disk blocks identified in the
request to which the read or write operation is to be performed
into a translated offset at which the read or write operation
will be performed instead. The translated request with the
translated offset is then passed to an associated hypervisor
through hypervisor integration 306 and the hypervisor will
perform the requested read or write operation at the translated
offset of the physical blocks of storage 310. In some embodi-
ments, the hypervisor is unaware that auto alignment engine
308 exists and/or has translated the request to be performed at
a translated offset.

US 9,256,474 B2

7

FIG. 4 is a flow diagram showing an embodiment of a
process for automatically aligning blocks of partitions to
physical blocks of a storage subsystem. In some embodi-
ments, process 400 is performed at system 300.

At 402, a starting offset for a partition is determined. In
some embodiments, one or more partitions are included in a
virtual disk, in which a starting offset is determined for each
of the one or more partitions. In some embodiments, the
starting offset of a partition refers to the offset associated with
the lowest underlying offset of a physical block to which data
associated with the partition is to be stored. In some embodi-
ments, an ending offset of the partition is also determined. In
some embodiments, the ending offset of a partition refers to
the offset associated with the highest underlying offset of a
physical block to which data associated with the partition is to
be stored. In some embodiments, a virtual disk reserved space
of the virtual disk is programmatically detected. In some
embodiments, each of the starting and ending offsets of the
partitions relative to the virtual disks are determined from a
partition table extracted from a portion (e.g., MBR) of the
virtual disk reserved space. In some embodiments, each of the
starting and ending offsets of the partitions (e.g., relative to
the virtual disks) are detected based on known bit patterns
associated with the starts and ends of partitions (e.g., associ-
ated with particular guest operating systems).

At 404, a storage system is automatically configured to
translate an offset associated with a read or write request
associated with the partition by an amount determined based
at least in part on an amount of misalignment between the
starting offset of the partition and a physical storage block
boundary of the storage system. In some embodiments, once
at least the starting offset of a partition is determined, a
misalignment correction amount is then determined for the
partition and also stored. The stored misalignment correction
amount associated with a partition can be retrieved from
storage and used to translate an offset associated with a sub-
sequently received read or write request associated with that
partition so that the requested data is read from or written to
a translated offset. By performing read and write requests at
translated offsets, the access time of the data can be reduced.

FIG. 5 is a flow diagram showing an embodiment of a
process for determining the misalignment amount of each of
one or more partitions of a virtual disk. In some embodiments,
process 500 is performed at system 300.

In some embodiments, process 500 can be initiated at the
creation of a new virtual disk (e.g., by a hypervisor). The
virtual disk can be created with one or more partitions and
each partition can be of a user-configurable size (e.g., one
partition can be configured to be 1 gigabyte (GB) in size and
another partition can be configured to be 2 GB in size). In
some embodiments, two or more successive partitions map to
contiguous physical blocks or non-contiguous physical
blocks. In some embodiments, one or more partitions can be
created when the virtual disk is created and one or more
partitions can also be added to the virtual disk sometime after
the initial creation of the virtual disk. In various embodi-
ments, the misalignment amount determined for each parti-
tion is stored. In some embodiments, the misalignment
amount determined for each partition can be added to one or
both of the original underlying starting and ending offsets of
a partition to effectively adjust/shift the mapping of the par-
tition for the purposes of making it aligned with the underly-
ing physical blocks of the storage subsystem. Then, the stor-
age system can translate and perform read and write requests
to the adjusted partition so that the beginning of a virtual disk
block of the partition can likely match with the beginning of
a physical block of the underlying storage subsystem. With-

25

30

35

40

45

8

out such translation to the adjusted offsets for the misaligned
partitions, a read and write request to the misaligned parti-
tions would have potentially straddled multiple physical
blocks. In some embodiments, new virtual disks are created to
store the adjusted offsets of the partitions. For example, a new
virtual disk can be created for each adjusted partition such
that each newly created partition would be aligned as it would
start at offset 0.

At 502, a misalignment correction amount for a first parti-
tion of a virtual disk is determined. In this example, the first
partition can refer to any partition of the virtual disk and is not
necessarily associated with the partition with the lowest
underlying starting offset. Once at least the starting offset of
the first partition is determined (e.g., by reading the partition
table extracted from the virtual disk reserved space), then a
misalignment correction amount of the first partition can be
determined. In some embodiments, it is first determined
whether the underlying starting offset of the partition is
aligned. For example, if the underlying starting offset of the
first partition is a multiple of the size of each physical block,
then the first partition is aligned and so the misalignment
correction amount of the first partition would be zero (i.e.,
[Underlying starting offset of the first partition] mod [physi-
cal block size|==0). But if the underlying starting offset of the
first partition is not a multiple of the size of each physical
block (i.e., [Underlying starting offset of the first partition]
mod [physical block size]!=0), then the first partition is mis-
aligned and the misalignment correction amount of the first
partition is greater than zero. For example, if the first partition
started at underlying starting offset 32,256 bytes and if the
physical block size were 32,768 bytes, then the partition is
misaligned because 32,256 mod 32,768 equals 32,256 and
not zero.

For example, the misalignment correction amount of the
first partition can be determined as the difference between the
physical block size and the underlying starting offset of the
first partition modulo the physical block size. Returning to the
previous example, the misalignment correction amount deter-
mined for the first partition can be 32,768 bytes-32,256
bytes=512 bytes. So, the starting offset of the first partition
can be adjusted/shifted by the misalignment correction
amount (i.e., 32,256 bytes+512 bytes) and the end offset of
the first partition can be accordingly adjusted/shifted by the
misalignment correction amount.

At 503, the misalignment correction amount determined
for the first partition of the virtual disk is stored. The mis-
alignment correction determined for the first partition is
stored so that it can be retrieved later to translate a request to
access data associated with the first partition.

At 504, it is determined if there are more partitions created
for the virtual disk for which misalignment correction
amounts have not yet been determined. In some embodi-
ments, the determination for more partitions, each at a suc-
cessively higher underlying offset than that associated with
the first partition, can be determined soon after the creation of
the virtual disk or at a later time. In some embodiments, the
determination of 504 can be made continuously or periodi-
cally until the operation of the storage system is stopped for
some reason, so that newly added partitions can be detected
and then misalignment correction amounts can be determined
for them. In the event that it is determined that at least one
more partition is detected, then control passes to 506. In the
eventthat it is determined that no other partitions are detected,
then process 500 ends.

At506, a misalignment correction amount for a subsequent
partition of the virtual disk is determined. For example, if the
previously determined partition was the partition associated

US 9,256,474 B2

9

with the lowest underlying offset of the virtual disk, then the
subsequent partition of the virtual disk is associated with the
second lowest underlying offset. Or, for example, if the pre-
viously determined partition was the partition associated with
the second lowest underlying offset, then this subsequent
partition would be the partition associated with the third
lowest underlying offset, and so forth. In some embodiments,
the misalignment correction amount of the subsequent parti-
tion includes at least the misalignment correction amount(s)
of the previous partition(s) because the subsequent partition
needs to be adjusted such that the subsequent partition does
not overlap with the previous partition(s). Once the subse-
quent partition is adjusted/shifted from its original starting
(and ending) offsets designated by the virtual disk by the
misalignment correction amount(s) of the previous
partition(s), the adjusted underlying starting offset of the
subsequent partition may not be a multiple of the size of each
physical block and so the shifted subsequent partition is mis-
aligned and needs to be adjusted further. So, in some embodi-
ments, the misalignment correction amount of the subsequent
partition is the combination of the misalignment correction
amount of the previous partition(s) and also the difference
between the physical block size and the underlying starting
offset of the subsequent partition adjusted/shifted by the mis-
alignment correction amount of the previous partition(s)
modulo the physical block size. Therefore, the misalignment
correction amount determined for the subsequent partition
will be used to adjust the underlying starting (and ending)
offsets of the subsequent partition such that the subsequent
partition does not overlap with any previous partitions and
also becomes aligned with the physical blocks.

At 508, the determined misalignment correction amount
for the subsequent partition of the virtual disk is stored. The
misalignment correction determined for the subsequent par-
tition is stored so that it can be retrieved later to translate a
request to access data associated with the subsequent parti-
tion. After 508, process 500 returns to 504, where it is deter-
mined whether there are more partitions created for the vir-
tual disk for which misalignment correction amounts have not
yet been determined.

FIG. 6A is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
logical container. In some embodiments, process 670 is
implemented at system 300. In some embodiments, process
670 is implemented at least in part using process 650.

At 672, data written to a logical container is extracted. In
some embodiments, data describing the partitions of a logical
container (e.g., a virtual disk) is written to an area of the
logical container and can be extracted once such data is
detected. At 674, a starting offset for a first partition of the one
ormore partitions of the logical container is determined based
at least in part on the extracted data. In this example, a first
partition can refer to the any one or more partitions of the
logical container and not necessarily the partition associated
with the lowest underlying offset. For example, the starting
offset of each of the partitions of the virtual disk can be read
from the extracted partition description data. In some
embodiments, the starting offset determined for each parti-
tion is stored to be used later, for example, to determine a
misalignment correction amount for each partition.

FIG. 6B is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk. In some embodiments, process 650 is imple-
mented at system 300.

At 652, a master boot record (MBR) data structure of a
virtual disk is detected. The MBR is an example of a set of
data that is written to an area of a virtual disk and that

10

15

20

25

30

35

40

45

50

55

60

65

10

describes the attributes of a virtual disk including the
attributes of the partitions of the virtual disk. The MBR is
usually written to the virtual disk reserved space of the virtual
disk. Generally, the MBR is written around the time that the
virtual disk is created. In some embodiments, the MBR of a
virtual disk can be detected based on monitoring the disk
location to which the MBR is written or by detecting data
patterns that indicate that data is being written to the MBR.

At 654, a partition table is extracted from the MBR. A
partition table that is stored as part of the MBR includes at
least the starting offset and ending offset of each partition
relative to the start of the virtual disk (i.e., the start of the
virtual disk is offset zero relative to the virtual disk).

At 656, boundaries of one or more partitions of the virtual
disk are determined based at least in part on the extracted
partition table. The extracted partition table is then read to
determine the boundaries (e.g., starting and ending offsets) of
the partitions and their respective sizes. In some embodi-
ments, at least a portion of the partition table is stored so that
the starting offsets of partitions of the virtual disk can be
recalled later in determining misalignment correction
amounts.

FIGS. 6C and 6D are examples showing the determination
of'the boundaries of the partitions of a virtual disk and also the
determination of misalignment correction amounts by using
data extracted from the virtual disk reserved space of the
virtual disk based at least in part on process 650. In some
embodiments, 402 of process 400 is implemented with the
examples of FIGS. 6C and 6D.

In FIG. 6C, a master boot record (MBR) data structure
comprises at least some of the data stored in virtual disk
reserved space 602. In the example of FIG. 6C, the starting
offset of Partition 1 is labeled as “Partition 1 Starting Offset”
and the ending offset of Partition 1 is labeled as “Partition 1
Ending Offset,” the starting offset of Partition 2 is labeled as
“Partition 2 Starting Offset” and the ending offset of Partition
2 is labeled as “Partition 2 Ending Offset.” Such starting and
ending offsets of partitions relative to the virtual disk are the
boundaries of the partitions. FIG. 6D is an example of a
partition table extracted from the MBR from virtual disk 600.
In the example, Partition 1 Starting Offset is located at 31.5
KB and Partition 1 Ending Offset is located at 1024 KB.
Furthermore, Partition 2 Starting Offset is located at 1024 KB
and Partition 2 Ending Offset is located at 100 GB. The
misalignment correction amount of Partition 1 can be deter-
mined, for example, as the difference between the size of each
physical block and Partition 1 Starting Offset (31.5 KB)
modulo the size of each physical block. Then the determined
misalignment correction amount will be used to adjust/shift
the first and subsequent partitions and used to translate sub-
sequent read and write requests to the adjusted/shifted start-
ing and ending offsets of the detected partitions.

FIG. 7A is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk and also determining misalignment correction
amounts by tracking actual disk access patterns over time. In
some embodiments, process 750 is implemented at system
300. In some embodiments, process 770 can be used alterna-
tively to process 670.

At 772, one or more regions corresponding to one or more
partitions included in a logical container are detected. In some
embodiments, particularly in those where a partition table is
not available, readable, and/or otherwise not understandable
such that explicit boundary information associated with the
one or more partitions is not available, one or more regions of
a logical container can be approximated as the corresponding
regions of the one or more partitions of the logical container.

US 9,256,474 B2

11

For example, each region can be detected based on known bit
patterns associated with the beginning and ends of partitions.
In another example, the logical container can be divided into
various regions based on preconfigured rules. At 774, statis-
tical information associated with a plurality of potential mis-
alignment correction amounts for a first region of the one or
more regions is collected. In this example, a first region can
correspond to the any one or more partitions of the logical
container and not necessarily the partition associated with the
lowest underlying offset. In some embodiments, statistical
information can be collected over time for accesses associ-
ated with each of the detected regions and then used to deter-
mine a misalignment correction amount for each detected
region and therefore, its corresponding partition. In some
embodiments, the determined misalignment correction
amount for each partition is stored to be used later, for
example, to determine a misalignment translation for each
partition.

FIG. 7B is a flow diagram showing an embodiment of a
process for determining the boundaries of the partitions of a
virtual disk and also determining misalignment correction
amounts by tracking actual disk access patterns over time. In
some embodiments, process 750 is implemented at system
300. In some embodiments, process 770 is implemented at
least in part using process 750.

At 752, a histogram associated with a plurality of potential
misalignment correction amounts is built for a detected
region associated with a partition. For example, the approxi-
mated underlying starting and ending offsets of regions of
partitions of a virtual disk can be detected by identifying bit
patterns known to be associated with whichever virtual disk is
associated with the virtual disk or using preconfigured rules.
Each detected region is used to represent a partition. Then,
statistical information associated with actual disk access pat-
terns is maintained for each detected region over a config-
urable period of time. For example, maintaining statistical
information can include creating a histogram of the number
of actual accesses at various potential misalignment correc-
tion amounts for each region, where each potential misalign-
ment correction amount is the offset of the access modulo the
size of each physical block of the underlying storage sub-
system. Each time an access is made to a region, a potential
misalignment correction amount that is the offset of the
access modulo the physical block size is incremented by one.

At 754, it is determined whether to determine a misalign-
ment correction amount for the partition. In some embodi-
ments, at the end of the configured period of time for main-
taining the histogram, the potential misalignment correction
amount associated with the highest number of accesses or
some other statistically significant metric is determined to be
the misalignment correction amount for the detected region
and thus the partition that it represents. This determined mis-
alignment correction amount will be used to adjust/shift the
partition and used to translate subsequent read and write
requests to the detected partition. In the event that the config-
ured period of time is over, then this determination is made
and control passes to 756. In the event that the configured
period is not over, then control returns to 752, where the
number of accesses is further maintained.

At 756, misalignment translation is applied to a request
associated with the partition based on the determined mis-
alignment correction amount. The determined misalignment
correction amount is used to translate an underlying offset
associated with a subsequently received request to the parti-
tion so that the requested operation will be performed at the
translated offset instead of the offset originally indicated by
the request.

25

30

35

40

45

50

12

FIGS. 7C and 7D are examples determining the boundaries
of the partitions of a virtual disk and also determining mis-
alignment correction amounts by tracking actual disk access
patterns over time based at least in part on process 750. In
some embodiments, 402 of process 400 is implemented with
the examples of FIGS. 7C and 7D. FIG. 7C shows a histogram
for a detected region at 31.5 KB to 1024 KB of a virtual disk
and FIG. 7D shows a histogram for a detected region at 1024
KB to 2028 KB of the virtual disk. Each time that an access is
made to either the region at 31.5 KB to 1024 KB or the region
at 1024 KB to 2028 KB of the virtual disk, the number of
accesses of a corresponding potential misalignment correc-
tion amount is incremented by one. In FIG. 7C, the potential
misalignment for region 31.5 KB to 1024 KB with the highest
number of accesses is 1024 bytes, so 1024 bytes is determined
to be the misalignment correction amount for region 31.5 KB
to 1024 KB. In FIG. 7D, the potential misalignment for region
1024 KB to 2028 KB with the highest number of accesses is
512 bytes so 512 bytes is determined to be the misalignment
correction amount for region 1024 KB to 2028 KB. In some
embodiments, the determined misalignment correction
amount of a detected partition region other than the detected
partition region at the lowest underlying starting offset will be
adjusted so as to prevent this detected partition region from
overlapping with a detected partition region at a lower under-
lying starting offset.

FIG. 8 is a diagram showing an embodiment of a process
for determining a misalignment correction amount for the
partition associated with the lowest underlying offset in a
virtual disk. In the example, virtual disk 800 includes a virtual
disk reserved space, Partition 1, which is the partition asso-
ciated with the lowest underlying offset of the virtual disk,
and Partition 2, which is the partition associated with the
lowest underlying offset of the virtual disk. Partition 1 is the
partition with the lower underlying starting offset and Parti-
tion 2 is the partition with the higher underlying starting
offset. In the example, the underlying starting offset of Parti-
tion 1 (e.g., as determined by reading a partition table
extracted from the MBR data structure of the virtual disk
reserved space) is misaligned because it is not a multiple of
the size of each physical block (i.e., [Underlying starting
offset of Partition 1] modulo [physical block size|!=0). The
determined misalignment correction amount for Partition 1 is
shown in the example as the difference between the mis-
aligned starting offset of Partition 1 and the starting boundary
offset of the next physical block. Partition 1 is adjusted by the
determined misalignment correction amount for Partition 1
so the starting offset of Partition 1 is adjusted to be at the
starting boundary offset of the next physical block. Similarly
(and optionally), the end offset of Partition 1 is also adjusted
by the misalignment correction amount for Partition 1 so as to
preserve the original size of Partition 1. The adjusted starting
offset (and adjusted ending offset) of Partition 1 are stored to
be used to translate subsequently read and write requests to
Partition 1 so that the requested data can be read from or
written to virtual disk blocks that are likely aligned with the
physical blocks of the underlying storage subsystem.

FIG. 9 is a diagram showing an embodiment of determin-
ing a misalignment correction amount for the partition asso-
ciated with the second lowest underlying offset in a virtual
disk. In the example, a misalignment correction amount is
now being determined for Partition 2 of virtual disk 800. The
underlying starting offset of Partition 2 (e.g., as determined
by reading a partition table extracted from the MBR data
structure of the virtual disk reserved space) is first adjusted/
shifted by the misalignment correction amount for Partition 1
so that Partition 2 will not overlap with Partition 1. However,

US 9,256,474 B2

13

once it is determined that the offset of the underlying starting
offset of Partition 2 adjusted/shifted by misalignment correc-
tion amount for Partition 1 is not a multiple of the size of each
physical block, then the underlying starting offset of Partition
2 is further shifted until it becomes a multiple of the size of
each physical block. As such, the misalignment correction
amount for Partition 2 is the combination of the misalignment
correction amount for Partition 1 and additional shifting that
brings the adjusted underlying starting offset of Partition 2 to
be aligned with a starting boundary offset of a physical block
([Adjusted starting offset of Partition 2] modulo [physical
block size|==0). Similarly and optionally, the ending offset of
Partition 2 also needs to be adjusted by the misalignment
correction amount for Partition 2 so as to preserve the original
size of Partition 2. The adjusted starting offset (and adjusted
ending offset) of Partition 2 are stored to be used to translate
read and write requests to Partition 2 so that the requested data
can be read from or written to virtual disk blocks that are
likely aligned with the physical blocks of the underlying
storage subsystem. The same technique applied to Partition 2
can be applied to any subsequent partitions that may be added
to virtual disk 800.

FIG. 10 is a flow diagram showing an embodiment of a
process for configuring a storage system to translate an offset
of'aread or write request by at least a misalignment correction
amount. In some embodiments, process 1000 is implemented
at system 300. In some embodiments, 404 of process 400 is
implemented with process 1000.

Process 1000 begins at 1001 when a request to perform a
read or write operation at a partition of a virtual disk is
received at the storage system such as system 300. In some
embodiments, the read or write request includes at least an
identifier of the VM with which the virtual disk is associated,
an identifier of the partition within the virtual disk to which
the request is to be performed, and also one or more virtual
disk blocks in the partition at which data is to be written to or
read from.

At 1002, a misalignment correction amount associated
with the partition is determined. In some embodiments, if a
misalignment correction amount associated with the partition
has already been determined and stored, then the stored mis-
alignment correction amount can be retrieved. Otherwise, if
the misalignment correction amount has not yet been deter-
mined, then it can be determined using a technique described
by FIGS. 6A, 6B, 6C, and 6D orby FIGS. 7A, 7B, 7C, and 7D.

At 1004, the misalignment correction amount is applied to
an offset associated with the request. In some embodiments,
a starting offset of the underlying storage system correspond-
ing to the one or more virtual disk blocks identified in the
request is determined. In various embodiments, applying
misalignment correction to the determined offset associated
with the request refers to adjusting/shifting/translating the
determined offset associated with the request with the mis-
alignment correction amount determined in 1002. The
adjusted/shifted underlying offset for the request may likely
be aligned with a starting boundary offset of a physical block.
For example, if the underlying offset associated with a request
was at 65,024 bytes (the physical block size was 32,778
bytes) and the misalignment correction amount was 512
bytes, then the adjusted underlying offset for the request
would be 65,024 bytes+512 bytes=65,536 bytes.

At 1006, the request is performed based at least in part on
the misalignment correction applied to the offset associated
with the request. In various embodiments, the requested read
or write operation would be performed at the underlying
storage system at the adjusted/translated underlying offset for
the request instead of the underlying offset originally associ-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

ated with the request. Returning to the previous example,
whereas the underlying offset originally associated with the
request was 65,024 bytes, the requested operation will instead
be performed at the adjusted underlying offset of 65,536
bytes. For example, if the request were a write operation, then
data that would have been written to offset of 65,024 bytes
would instead be written to 65,536 bytes. Also for example, if
a subsequent read operation requested to read data at (not
corrected) the underlying offset of 65,024 bytes, then that
offset will be corrected such that the requested data will be
read from the adjusted underlying offset of 65,536 bytes,
where the data is actually stored.

FIG. 11 is a diagram showing an embodiment of applying
misalignment correction for read or write requests associated
with a partition of the virtual disk. In some embodiments, auto
alignment engine 308 of system 300 can be used as shown in
the example. A misaligned read or write request associated
with a partition is received at a storage system such as system
300. The request associated with a misaligned underlying
offset is input to auto alignment engine 308. In some embodi-
ments, auto alignment engine 308 can perform at least a
portion of process 1000. After processing, auto alignment
engine 308 outputs a corrected read or write request that is
newly associated with an adjusted/translated underlying off-
set, at which the request operation will be performed. For
example, the adjusted/translated underlying offset is the sum
of the misaligned underlying offset and the misalignment
correction amount determined for the partition associated
with the request. Performing the requested operation at the
corrected underlying offset will likely be better than perform-
ing the requested operation at the original, not corrected
underlying offset of the request.

FIG. 12 is a flow diagram showing an embodiment of a
process for buffering write requests until the MBR of the
virtual disk is located. In some embodiments, process 1200 is
implemented at system 300.

In some embodiments where the MBR data structure is
extracted and the partition table thereof is read to determine
the boundaries of partitions in a virtual disk so that the storage
system can determine how to translate the requests to aligned
offsets, it is desirable to hold off performing write requests to
a persistent form of storage prior to detecting the MBR.
Although, it is common for the MBR to be written around the
time that the virtual disk is created, it is possible that the MBR
may not be written before one or more write requests are sent
to be processed at the virtual disk. Process 1200 may be used
to prevent performing unaligned write requests at persistent
storage (e.g., disk storage) until the MBR is located so that
misalignment information can be determined and then used to
translate the write requests to hopefully align them with
boundaries of physical blocks.

At 1202, one or more received write requests are buffered.
In some embodiments, write requests to a virtual disk whose
MBR has not yet been located are buffered. For example, the
data to be written associated with requests can be stored in
memory or some other form of temporary storage. In some
embodiments, meta data associated with each virtual disk is
maintained such that buffered write requests are kept track of
until they can be performed. In some embodiments, there is a
configured size threshold associated with the received write
requests such that only write requests whose sizes that meet or
exceed the size threshold are buffered while write requests
whose sizes do not meet the size threshold are written to
persistent storage without buffering. One benefit to configur-
ing a size threshold for buffering write requests is to hold off
performing only write requests that are relatively bigger

US 9,256,474 B2

15

while permitting smaller write requests to proceed so that
fewer than all write requests to the virtual disk are delayed due
to buffering.

At 1204, it is determined whether the MBR is found. In
some embodiments, the MBR can be detected in a portion of
the virtual disk known to be the location at which the MBR is
written. In some embodiments, meta data associated with the
virtual disk includes a state associated with locating the
MBR. If the state indicates that the MBR has not yet been
found (e.g., because the MBR has not yet been written), then
control passes back to 1202, where subsequent received write
requests are buffered. However, if the state indicates that the
MBR has already been found, then control passes to 1206.

At 1206, the MBR is read to determine a misalignment
correction amount associated with each of one or more par-
titions. In some embodiments, the MBR or specifically, the
partition table thereof is read to determine boundaries of the
one or more partitions of the virtual disk. Then a misalign-
ment correction amount can be determined for each partition
based on, for example, using the techniques described with
FIGS. 6A, 6B, 6C, and 6D.

At 1208, misalignment correction is applied to an offset
associated with each of the one or more buffered write
requests. Once the misalignment correction amount is deter-
mined for each partition, then misalignment translation is
applied to each of the one or more buffered write requests
such that a misaligned underlying offset of a write request is
translated/adjusted by the misalignment correction amount
associated the appropriate partition so that the adjusted
underlying offset of the write request likely becomes aligned
with a physical block.

At 1210, each of the one or more buffered write requests is
performed based at least in part on the misalignment correc-
tion applied to the offset associated with the request. Each of
the one or more buffered write requests are then performed at
the corresponding adjusted underlying offset.

FIG. 13 is a diagram showing a gap created between a
virtual disk reserved space and a partition associated with the
lowest underlying offset of a virtual disk due to the applica-
tion of misalignment translation. In the example, for virtual
disk 1300, a gap of n bytes (i.e., the misalignment correction
amount) in the physical storage subsystem is created between
the original misaligned offset of the partition associated with
the lowest underlying offset (“Partition 1”) and the adjusted
starting offset of Partition 1, which is aligned with a starting
boundary offset at a physical block. While a gap is depicted to
be between the virtual disk reserved space and a partition with
the lowest underlying offset of the virtual disk, a gap can also
exist between two partitions. Because both the starting offset
and the ending offset of Partition 1, in some embodiments, are
adjusted by the n bytes of the misalignment correction
amount and the virtual disk is not able to access this gap of n
bytes, the amount of physical storage address space required
for adjusted Partition 1 is effectively extended or increased by
the size of the gap of n bytes. For example, if Partition 1 is 1
GB in size, then after performing misalignment correction,
the physical storage to store data associated with Partition 1
could be 1 GB plus n bytes in addressable space, in some
embodiments. Gaps such as these generally do not have nega-
tive consequences. However, instead of extending the physi-
cal storage required to store data associated with the virtual
disk blocks at the end of the partition by n bytes, in some
embodiments, n bytes of data from the end of the partition can
be mapped to the gap. In some embodiments, mapping the
data associated with an end of a partition or the end of an
entire virtual disk to one or more gaps associated with the
virtual disk is referred to as “wrapping back.” In various

20

30

40

45

55

16

embodiments, wrapping back the data results in data that
would have otherwise been stored at or read from an offset
associated with the end of a partition to being stored at or read
from an offset associated with a gap associated with the
partition.

FIG. 14 is a flow diagram showing an embodiment of a
process for wrapping back data associated with an end of a
partition of a virtual disk. In some embodiments, process
1400 is implemented at system 300.

In process 1400, it is assumed a gap of size n bytes located
between the misaligned starting offset and the adjusted start-
ing offset of the partition exists in the physical storage sub-
system. As such, process 1400 allows requested data associ-
ated with the last n bytes of the partition to be wrapped back
to the gap of n bytes (e.g., instead of mapping the last n bytes
of'the partition to an extended n bytes of physical storage to be
associated with the partition). In this way, the gap created by
the misalignment translation at the beginning of the partition
can be filled in by the data associated with the end of the
partition.

At 1402, a read or write request associated with a partition
is received. In some embodiments, the read or write request
includes at least an identifier of the VM with which the virtual
disk is associated, an identifier of the partition within the
virtual disk to which the request is to be performed, and also
one or more virtual disk blocks in the partition at which data
is to be written to or read from.

At 1404, it is determined whether an offset associated with
the request is associated with the last n bytes of the partition.
It is determined whether the one or more virtual disk blocks
identified in the request corresponds to the last n bytes of the
partition. In the event that the request is not associated with
the last n bytes of the partition, then process 1400 ends (and
the request is processed without applying wrapping back). In
the event that the request is associated with the last n bytes of
the partition, then control passes to 1406.

At 1406, wrapping back of the request to an offset of a gap
associated with the partition is applied. In some embodi-
ments, a starting offset of the gap (i.e., the original misaligned
offset of the partition) is stored and data associated with the
last n bytes are stored to and or read from the starting offset of
the gap. In some embodiments, translating the offset associ-
ated with the last n bytes to the starting offset of the gap is
performed transparently to the hypervisor.

At 1408, the request is performed based at least in part on
the offset of the gap associated with the partition. The
requested read or write operation is performed at the starting
offset of the gap, instead of at an offset associated with an
extended portion of the physical storage to be required for the
partition.

Invarious embodiments, the same wrapping technique can
be applied to an entire virtual disk rather than to an individual
partition, although in this case, data that would extend the size
of the physical storage to be required for the virtual disk
beyond the original size of the virtual disk would be spread
across multiple gaps rather than just one.

FIG. 15 is a diagram showing an example of the wrapping
back of the last n bytes of a partition to a gap of n bytes of
physical storage associated with the partition. Assume that if
process 1400 were performed on the example, requested data
associated with the last n bytes of Partition 1 would be
wrapped back to the gap of n bytes that is located between the
misaligned starting offset and the adjusted starting offset of
Partition 1 in the physical storage subsystem.

For example, assume that the misaligned starting offset of
Partition 1 was at 32,256 bytes and the adjusted starting offset
of Partition 1 is at 32,768 and so the created gap is 512 bytes

US 9,256,474 B2

17

in size. In some embodiments, instead of extending the end of
Partition 1 by 512 bytes, the last 512 bytes of Partition 1 can
be mapped to (e.g., stored at or read from) underlying offset
32,256.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system, comprising:

a processor configured to:

extract data written to a logical container; and

determine a starting offset for a partition associated with
the logical container based at least in part on a mis-
alignment correction amount associated with a previ-
ous partition and on the extracted data; and

a memory coupled to the processor and configured to store

the starting offset.

2. The system of claim 1, wherein data written to the logical
container comprises a master boot record (MBR).

3. The system of claim 2, wherein the processor is further
configured to detect the MBR based on one or both of the
following: monitoring a location to which the MBR is to be
written and detecting one or more data patterns associated
with the MBR.

4. The system of claim 2, wherein the processor is further
configured to determine whether the MBR has been detected:

in the event that the MBR has not been detected, buffer a

received write request until the MBR has been detected;
and

in the event that the MBR has been detected, perform the

write request and any buffered write requests by at least
automatically translating an offset associated with each
write request by at least a misalignment correction
amount determined for a partition associated with that
write request.

5. The system of claim 4, wherein to buffer the write
request includes to store data associated with the write
request in temporary storage.

6. The system of claim 4, wherein in the event that the MBR
has been detected, the processor is further configured to move
any unaligned data written prior to detecting the MBR based
at least in part on any associated misalignment correction
amounts.

7. The system of claim 1, wherein the data written to the
logical container associated with boundaries of one or more
partitions associated with the logical container comprises a
partition table.

8. The system of claim 7, wherein to determine the starting
offset for the partition associated with the logical container is
based at least in part on reading the partition table.

9. The system of claim 1, wherein the processor is further
configured to use the starting offset of the partition to deter-
mine a misalignment correction amount for the partition.

10. The system of claim 9, wherein the partition comprises
a first partition and wherein the processor is further config-
ured to determine a misalignment correction amount for a
second partition associated with the logical container based at
least in part on the misalignment correction amount deter-
mined for the first partition.

11. The system of claim 9, wherein the processor is further
configured to:

receive a request associated with the partition; and

automatically translate an offset associated with the

request by an amount determined based at least in part on
the misalignment correction amount for the partition.

10

15

20

25

30

35

40

45

50

55

60

65

18

12. The system of claim 11, wherein to translate the offset
associated with the request is performed transparent to an
associated hypervisor.

13. The system of claim 11, wherein the partition com-
prises a first partition and wherein the processor is further
configured to translate a misalignment correction amount for
a second partition included in the logical container based at
least in part on the misalignment correction amount for the
first partition.

14. The system of claim 11, wherein the processor is fur-
ther configured to perform the request at an offset determined
based at least in part on the translation of the offset of the
request by at least the misalignment correction amount for the
partition.

15. The system of claim 11, wherein the processor is fur-
ther configured to:

determine whether the request is associated with a config-

ured amount of storage associated with an end of the
partition; and

in the event that the request is associated with the config-

ured amount of storage associated with the end of the
partition, apply wrapping back of the request to an offset
associated with a gap of the partition.

16. The system of claim 1, wherein the starting offset for
the partition is determined based at least in part on statistical
information derived from historical misalignment informa-
tion.

17.The system of claim 1, wherein determining the starting
offset based at least in part on a misalignment correction
amount associated with a previous partition and on the
extracted data comprises:

computing the starting offset using the misalignment cor-

rection amount applied to the previous partition and an
additional adjustment necessary to shift a starting
boundary of the partition with the misalignment correc-
tion amount applied to a next starting boundary of a
physical block.

18. A method, comprising:

extracting data written to a logical container; and

determining a starting offset for a partition associated with

the logical container based at least in part on a misalign-
ment correction amount associated with a previous par-
tition and on the extracted data.

19. The method of claim 18, wherein data written to the
logical container comprises a master boot record (MBR).

20. The method of claim 19, further comprising detecting
the MBR based on one or both of the following: monitoring a
disk location to which the MBR is to be written and detecting
one or more data patterns associated with the MBR.

21. The method of claim 19, further comprising determin-
ing whether the MBR has been detected:

in the event that the MBR has not been detected, buffering

a received write request until the MBR has been
detected; and

in the event that the MBR has been detected, performing

the write request and any buffered write requests by at
least automatically translating an offset associated with
each write request by at least a misalignment correction
amount determined for a partition associated with that
write request.

22. The method of claim 18, wherein the data written to the
logical container associated with boundaries of one or more
partitions associated with the logical container comprises a
partition table.

23. The method of claim 22, wherein determining the start-
ing offset for the partition associated with the logical con-
tainer is based at least in part on reading the partition table.

US 9,256,474 B2

19

24. A computer program product, the computer program
product being embodied in a non-transitory computer read-
able storage medium and comprising computer instructions
for:

extracting data written to a logical container; and

determining a starting offset for a partition associated with

the logical container based at least in part on a misalign-
ment correction amount associated with a previous par-
tition and on the extracted data.

#* #* #* #* #*

10

20

